Cryostat Issues for SPS Crab Cavity Run: Envelopes and Interfaces

Alick Macpherson RF Group CERN

Fermilab cryostat meeting - 30th May 2013

Acknowledgments

Philippe Baudrenghien, Krzysztof Brodzinski, Rama Calaga, Ofelia Capatina, Frederic Galleazzi, Erk Jensen, Eric Montesinos, Vittorio Parma, Rogelio Tomas, Giovanna Vandoni

SPS Run: Overview of Constraints on Cryostat design

- Cryo module must contain 2 cavities
- Cryomodule must be out of beam line when cavities not under test
 - Remote control of movement essential
 - Module to be moved while cold and full of LHe
- Alignment and positioning:
 - Accurate positioning wrt the closed orbit beam is essential
 - Question: Is active alignment within the cryostat required/feasible?
- Cryo module should be exchangeable in an SPS technical stop
 - Technical stop = 3 days => common envelopes and common interfaces
- Foresee both horizontal and vertical crabbing could be tested:
 - Possibility of more than one cryostat tested in SPS Run
 - Designs must have common connection interfaces (type + position)

Infrastructure constraints on location

- Cryogenics: Can't guarantee 24/7 cryo operation in SPS
 - Cryo module: must be able to cycle it out of the beam line
 - Space required for "out of beam position"
 - Horizontal move (standard) => SPS alcove (not possible in tunnel)
 - Vertical move: Very very challenging, space/clearance an issue

Interfaces

- Rigid connection between tetrode and cryomodule
- Rigid connection between cryo 2K expansion box and cryomodule

RF-Power and LLRF

- Tetrode+ circulator as close as possible to cryomodule
 - Space required => location restricted to an alcove

Infrastructure constraints on location

- Cryogenics: Can't guarantee 24/7 cryo operation in SPS
 - Cryo module: must be able to cycle it out of the beam line
 - Space required for "out of beam position"
 - Horizontal move (standard) => SPS alcove (not possible in tunnel)
 - Vertical move: Very very challenging, space/clearance an issue

Interfaces

- Rigid connection between tetrode and cryomodule
- Rigid connection between cryo 2K expansion box and cryomodule
- RF-Power and LLRF
 - Tetrode+ circulator as close as possible to cryomodule
 - Space required => location restricted to an alcove

SPS: Cryo module location needs space for Y-chamber and RF power => location must be in an SPS alcove (or similar)

SPS: Space in the tunnel

SPS: Space in the Alcove

SPS location: LSS4

SPS: LSS4 alcove of BA4 is the only location that is feasible /available

SPS location: LSS4

SPS: LSS4 alcove of BA4 is the only location that is feasible /available

Issues with the SPS LSS4 Location

- SPS Extraction bump prohibits CC in beam when filling LHC
- CCs in beam: Blocks LHC filling. Aperture bottleneck for normal SPS operation
 - => Y-Chamber needed so cavities can be bypassed when not under test

SPS LSS4: LHC Extraction bump (Q20 optics)

Location is not ideal: Aperture bottleneck + must interlock on CC + LHC filling

Movement of Crab cavities in/out of beamline

SPS operation must be independent of crab cavity operational availability

=> Crab Cavity cryomodule switchable from in-beam to out-of-beam position

SPS Outside

Movement of Crab cavities in/out of beamline

SPS operation must be independent of crab cavity operational availability

=> Crab Cavity cryomodule switchable from in-beam to out-of-beam position

SPS Outside

- Y-chamber movement: reproducible 51cm movement in < 30min
 - Must be remote controlled (ie no access required) and take
 - Safety incorporated into support structure design
 - Mechanical movement with helium vessels, cryo-lines etc at 2K

Crab Cavity Integration envelope

Description	Distance [mm]
Envelope z-length	3000
Cavity axis to inner edge of Envelope volume	420
Cavity axis to outer edge of Envelope volume	680*
Cavity axis to bottom of Envelope volume (top of support table)	700*
Cavity axis to top of Envelope volume	800
Cavity axis to SPS floor	1200
Cavity axis to By-pass axis	510
Diameter of bypass beam line	159
Diameter of cavity aperture	84
Dummy beam pipe outer diameter (HL-LHC BP in Q4-D2 region)	~100
Cavity axis to dummy beam pipe axis	194

Crab Cavity Integration envelope

Crab Cavity Integration envelope

External connections need to be inside in envelope as have to respect table movement constraints => integration interfaces not a lot of space

Space in LSS4 - Physical Obstacles

Space in LSS4 - Physical Obstacles

Integration Envelope Questions

- Dummy Beam Pipe: CC Axis-to-Dummy BP axis distance = 194 mm
 - Can be at any location (horizontal, vertical etc) wrt CC axis
 - Exception: UK-4Rod has FPC connection to CC on horizon
 - Question 1: Can we move location of dummy Beam pipe?
 => we gain space between CC and by-pass, makes things easier.

Integration Envelope Questions

- Dummy Beam Pipe: CC Axis-to-Dummy BP axis distance = 194 mm
 - Can be at any location (horizontal, vertical etc) wrt CC axis
 - Exception: UK-4Rod has FPC connection to CC on horizon
 - Question 1: Can we move location of dummy Beam pipe?
 => we gain space between CC and by-pass, makes things easier.

Question 2: Can distance from CC axis to the inside edge of envelope be reduced from 420mm to 255 mm?

If so we can use existing Y-chamber

Integration Envelope Issues

- CC Envelope: Physical envelope of space available
 - Includes cryo module and connections (up to integration interfaces)
 - Connections from all sides except inside face

Integration Envelope Issues

- CC Envelope: Physical envelope of space available
 - Includes cryo module and connections (up to integration interfaces) Integration
 - Connections from all sides except inside face
 - Integration interfaces at envelope need to be clearly defined
 - Must take connections into account
 - Input to specifications

interfaces

Alignment Tolerances

- Based on modeling Crab Cavities with multipoles up to octupole order
- Transverse misalignment tolerances [TMT]
 - TMT defined as a 1 sigma reduction of dynamic aperture.
 - TMT = 0.7 mm for each cavity
 - Applies to both planes: different crossing schemes for IR1 & IR5
- Tilt of the cavity wrt longitudinal cryostat axis < 1 mrad
 - Based on luminosity loss, closed orbit deformation, tune modulation
- Transverse rotation of individual cavities inside cryostat < 5 mrad (~0.3 deg)
 - · Based on effects of parasitic crossing angle in the non-crossing plane
- Assume

electro-magnetic centre axis of cavity = geometrical longitudinal axis of cavity

= longitudinal cryostat axis

= geometric center of the beampipe

Positioning of Cryomodule

RF amplifier TX power vs. Q_{EXT}: (400 MHz - 50 kW SPS Tetrode)

Acceptable transverse offset of beam wrt cavity of O(1mm)

Positioning of Cryomodule

RF amplifier TX power vs. Q_{EXT}: (400 MHz - 50 kW SPS Tetrode)

Positioning of Cryomodule

RF amplifier TX power vs. Q_{EXT}: (400 MHz - 50 kW SPS Tetrode)

Position cavity axis wrt beam closed orbit position essential

=> active alignment + beam steering

Positioning and Alignment

- Reproducible positioning of cryomodule wrt nominal beam line
 - Actual closed orbit position of beam can be measured (with bypass in)
 - Then cryomodule into beam position with calculated closed orbit offset
 - Cryomodule position tolerance = fraction of cavity alignment tolerance
 - Specifications assumed ~15% of transverse alignment tolerance
 - => support table transverse alignment tolerance for =100um
 - Assumes rigid + accurate fixation of cryomodule to support table

Alignment requires active remote positioning of cryomodule/support table wrt beam closed orbit beam

Positioning and Alignment

- Reproducible positioning of cryomodule wrt nominal beam line
 - Actual closed orbit position of beam can be measured (with bypass in)
 - Then cryomodule into beam position with calculated closed orbit offset
 - Cryomodule position tolerance = fraction of cavity alignment tolerance
 - Specifications assumed ~15% of transverse alignment tolerance
 - => support table transverse alignment tolerance for =100um
 - Assumes rigid + accurate fixation of cryomodule to support table

Alignment requires active remote positioning of cryomodule/support table wrt beam closed orbit beam

- Alignment of cavities within cryomodule
- Need to understand expected relative mis-alignments due to installation and thermal cycling - what is expected
- Offers opportunity to understand how to resolve this for LHC scenario
 - potentially 3 independent cavities per cryomodule

Constraints/implications on active alignment within cryostat needs discussion

Schedule - Simple Overview of SPS Crab Cavity Run

Intensity ramp-up

Schedule up to Installation in the SPS

- Power coupler design completed: Q1 of 2013
- SM18 Vertical tests of prototype cavities: start Q2 of 2013
- Cryostat design ready: End of 2013
- Cryogenic infrastructure installed in SPS LSS4: End of SPS LS1
- Cabling infrastructure in SPS: Q1 of 2014
- Power Couplers available for cryostat: Q1 of 2015
- Cryomodule fully dressed: Q2 of 2015
- SM18 Cryomodule fully tested: Q3 of 2015
- Cryomodule installed in SPS in December: 2015-2016 Christmas stop.
- Crab Cavity validation MDs: SPS Run 2016

Conclusion

- An integration envelope for the crab cavities in the SPS now exists
 - Envelope contains cryomodule and its service connections
 - Definition of integration interfaces need to be defined
 - Needs detailed input to define integration + cryostat interfaces
- Significant integration and space gains can be made if dummy beam pipe is not at the horizontal on the "SPS-inside" position
- Active positioning of the cryomodule wrt the beam center is essential
 - Position to be done by control of the support table
- Active alignment within the cryostat has to be discussed in detail
 - But may help define solution for LHC installation